def model_EES(input_col, input_row):
_input = Input(shape=(input_col, input_row, 1), name='input')
EES = Conv2D(nb_filter=8, nb_row=3, nb_col=3, init='he_normal',
activation='relu', border_mode='same', bias=True)(_input)
EES = Deconvolution2D(nb_filter=16, nb_row=14, nb_col=14, output_shape=(None, input_col * 2, input_row * 2, 16),
subsample=(2, 2), border_mode='same', init='glorot_uniform', activation='relu')(EES)
out = Conv2D(nb_filter=1, nb_row=5, nb_col=5, init='glorot_uniform', activation='relu', border_mode='same')(EES)
model = Model(input=_input, output=out)
# sgd = SGD(lr=0.0001, decay=0.005, momentum=0.9, nesterov=True)
Adam = adam(lr=0.001)
model.compile(optimizer=Adam, loss='mean_squared_error', metrics=['mean_squared_error'])
return model
评论列表
文章目录