test_temporal_data_tasks.py 文件源码

python
阅读 28 收藏 0 点赞 0 评论 0

项目:keras 作者: GeekLiB 项目源码 文件源码
def test_sequence_to_sequence():
    '''
    Apply a same Dense layer for each element of time dimension of the input
    and make predictions of the output sequence elements.
    This does not make use of the temporal structure of the sequence
    (see TimeDistributedDense for more details)
    '''
    (X_train, y_train), (X_test, y_test) = get_test_data(nb_train=500,
                                                         nb_test=200,
                                                         input_shape=(3, 5),
                                                         output_shape=(3, 5),
                                                         classification=False)

    model = Sequential()
    model.add(TimeDistributedDense(y_train.shape[-1],
                                   input_shape=(X_train.shape[1], X_train.shape[2])))
    model.compile(loss='hinge', optimizer='rmsprop')
    history = model.fit(X_train, y_train, nb_epoch=20, batch_size=16,
                        validation_data=(X_test, y_test), verbose=0)
    assert(history.history['val_loss'][-1] < 0.8)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号