def preprocess_input(self, x):
if self.consume_less == 'cpu':
input_shape = self.input_spec[0].shape
input_dim = input_shape[2]
timesteps = input_shape[1]
return time_distributed_dense(x, self.W, None, self.dropout_W,
input_dim, self.output_dim,
timesteps)
else:
return x
# override Recurrent's get_initial_states function to load the trainable
# initial hidden state
评论列表
文章目录