def test_tiny_mul_random(self):
np.random.seed(1988)
input_dim = 10
num_channels = 6
# Define a model
input_tensor = Input(shape = (input_dim, ))
x1 = Dense(num_channels)(input_tensor)
x2 = Dense(num_channels)(x1)
x3 = Dense(num_channels)(x1)
x4 = multiply([x2, x3])
x5 = Dense(num_channels)(x4)
model = Model(inputs=[input_tensor], outputs=[x5])
# Set some random weights
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Get the coreml model
self._test_keras_model(model)
评论列表
文章目录