def model_discriminator():
nch = 256
h = 5
reg = lambda: l1l2(l1=1e-7, l2=1e-7)
c1 = Convolution2D(nch / 4, h, h, border_mode='same', W_regularizer=reg(),
input_shape=dim_ordering_shape((3, 32, 32)))
c2 = Convolution2D(nch / 2, h, h, border_mode='same', W_regularizer=reg())
c3 = Convolution2D(nch, h, h, border_mode='same', W_regularizer=reg())
c4 = Convolution2D(1, h, h, border_mode='same', W_regularizer=reg())
model = Sequential()
model.add(c1)
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(LeakyReLU(0.2))
model.add(c2)
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(LeakyReLU(0.2))
model.add(c3)
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(LeakyReLU(0.2))
model.add(c4)
model.add(AveragePooling2D(pool_size=(4, 4), border_mode='valid'))
model.add(Flatten())
model.add(Activation('sigmoid'))
return model
评论列表
文章目录