def _residual_block(self, ip, id):
init = ip
x = Convolution2D(self.filters, 3, 3, activation='linear', border_mode='same', name='sr_res_conv_' + str(id) + '_1',
init=self.init)(ip)
x = BatchNormalization(axis=channel_axis, mode=self.mode, name='sr_res_bn_' + str(id) + '_1')(x)
x = LeakyReLU(alpha=0.25, name="sr_res_activation_" + str(id) + "_1")(x)
x = Convolution2D(self.filters, 3, 3, activation='linear', border_mode='same', name='sr_res_conv_' + str(id) + '_2',
init=self.init)(x)
x = BatchNormalization(axis=channel_axis, mode=self.mode, name='sr_res_bn_' + str(id) + '_2')(x)
m = merge([x, init], mode='sum', name="sr_res_merge_" + str(id))
return m
models.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录