convolutional.py 文件源码

python
阅读 20 收藏 0 点赞 0 评论 0

项目:DeepJet 作者: mstoye 项目源码 文件源码
def model_deepFlavourNoNeutralReference(Inputs,nclasses,nregclasses,dropoutRate=0.1):
    """
    reference 1x1 convolutional model for 'deepFlavour'
    with recurrent layers and batch normalisation
    standard dropout rate it 0.1
    should be trained for flavour prediction first. afterwards, all layers can be fixed
    that do not include 'regression' and the training can be repeated focusing on the regression part
    (check function fixLayersContaining with invert=True)
    """  
    globalvars = BatchNormalization(momentum=0.6,name='globals_input_batchnorm') (Inputs[0])
    cpf    =     BatchNormalization(momentum=0.6,name='cpf_input_batchnorm')     (Inputs[1])
    vtx    =     BatchNormalization(momentum=0.6,name='vtx_input_batchnorm')     (Inputs[2])
    ptreginput = BatchNormalization(momentum=0.6,name='reg_input_batchnorm')     (Inputs[3])

    cpf, vtx = block_deepFlavourBTVConvolutions(
        charged=cpf,
        vertices=vtx,
        dropoutRate=dropoutRate,
        active=True,
        batchnorm=True
        )


    #
    cpf  = LSTM(150,go_backwards=True,implementation=2, name='cpf_lstm')(cpf)
    cpf=BatchNormalization(momentum=0.6,name='cpflstm_batchnorm')(cpf)
    cpf = Dropout(dropoutRate)(cpf)

    vtx = LSTM(50,go_backwards=True,implementation=2, name='vtx_lstm')(vtx)
    vtx=BatchNormalization(momentum=0.6,name='vtxlstm_batchnorm')(vtx)
    vtx = Dropout(dropoutRate)(vtx)


    x = Concatenate()( [globalvars,cpf,vtx ])

    x = block_deepFlavourDense(x,dropoutRate,active=True,batchnorm=True,batchmomentum=0.6)

    flavour_pred=Dense(nclasses, activation='softmax',kernel_initializer='lecun_uniform',name='ID_pred')(x)

    reg = Concatenate()( [flavour_pred, ptreginput ] ) 

    reg_pred=Dense(nregclasses, activation='linear',kernel_initializer='ones',name='regression_pred',trainable=True)(reg)

    predictions = [flavour_pred,reg_pred]
    model = Model(inputs=Inputs, outputs=predictions)
    return model
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号