def convolutional_model_broad(Inputs,nclasses,nregclasses,dropoutRate=-1):
"""
reference 1x1 convolutional model for 'deepFlavour', as for DPS note
"""
cpf,npf,vtx = block_deepFlavourConvolutions(charged=Inputs[1],
neutrals=Inputs[2],
vertices=Inputs[3],
dropoutRate=dropoutRate)
cpf = LSTM(150,go_backwards=True,implementation=2, name='cpf_lstm')(cpf)
cpf = Dropout(dropoutRate)(cpf)
npf = LSTM(50,go_backwards=True,implementation=2, name='npf_lstm')(npf)
npf = Dropout(dropoutRate)(npf)
vtx = LSTM(50,go_backwards=True,implementation=2, name='vtx_lstm')(vtx)
vtx = Dropout(dropoutRate)(vtx)
image = block_SchwartzImage(image=Inputs[4],dropoutRate=dropoutRate,active=False)
x = Concatenate()( [Inputs[0],cpf,npf,vtx,image ])
x = block_deepFlavourDense(x,dropoutRate)
predictions = Dense(nclasses, activation='softmax',kernel_initializer='lecun_uniform',name='ID_pred')(x)
model = Model(inputs=Inputs, outputs=predictions)
return model
评论列表
文章目录