def convolutional_model_deepcsv(Inputs,nclasses,nregclasses,dropoutRate=-1):
cpf=Inputs[1]
vtx=Inputs[2]
cpf = Convolution1D(64, 1, kernel_initializer='lecun_uniform', activation='relu', name='cpf_conv0')(cpf)
cpf = Dropout(dropoutRate)(cpf)
cpf = Convolution1D(32, 1, kernel_initializer='lecun_uniform', activation='relu', name='cpf_conv1')(cpf)
cpf = Dropout(dropoutRate)(cpf)
cpf = Convolution1D(32, 1, kernel_initializer='lecun_uniform', activation='relu', name='cpf_conv2')(cpf)
cpf = Dropout(dropoutRate)(cpf)
cpf = Convolution1D(8, 1, kernel_initializer='lecun_uniform', activation='relu' , name='cpf_conv3')(cpf)
vtx = Convolution1D(64, 1, kernel_initializer='lecun_uniform', activation='relu', name='vtx_conv0')(vtx)
vtx = Dropout(dropoutRate)(vtx)
vtx = Convolution1D(32, 1, kernel_initializer='lecun_uniform', activation='relu', name='vtx_conv1')(vtx)
vtx = Dropout(dropoutRate)(vtx)
vtx = Convolution1D(32, 1, kernel_initializer='lecun_uniform', activation='relu', name='vtx_conv2')(vtx)
vtx = Dropout(dropoutRate)(vtx)
vtx = Convolution1D(8, 1, kernel_initializer='lecun_uniform', activation='relu', name='vtx_conv3')(vtx)
cpf=Flatten()(cpf)
vtx=Flatten()(vtx)
x = Concatenate()( [Inputs[0],cpf,vtx ])
x = block_deepFlavourDense(x,dropoutRate)
predictions = Dense(nclasses, activation='softmax',kernel_initializer='lecun_uniform',name='ID_pred')(x)
model = Model(inputs=Inputs, outputs=predictions)
return model
评论列表
文章目录