def test_transposed_conv(self):
keras_model = Sequential()
keras_model.add(Conv2DTranspose(32, (2, 2), strides=(
2, 2), input_shape=(3, 32, 32), name='trans'))
keras_model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.SGD())
pytorch_model = TransposeNet()
self.transfer(keras_model, pytorch_model)
self.assertEqualPrediction(keras_model, pytorch_model, self.test_data)
# Tests special activation function
评论列表
文章目录