dcgan_mnist.py 文件源码

python
阅读 27 收藏 0 点赞 0 评论 0

项目:pythontest 作者: gjq246 项目源码 文件源码
def generator(self):
        if self.G:
            return self.G
        self.G = Sequential()
        dropout = 0.4
        depth = 64+64+64+64
        dim = 7
        # In: 100
        # Out: dim x dim x depth
        self.G.add(Dense(dim*dim*depth, input_dim=100))
        self.G.add(BatchNormalization(momentum=0.9))
        self.G.add(Activation('relu'))
        self.G.add(Reshape((dim, dim, depth)))
        self.G.add(Dropout(dropout))

        # In: dim x dim x depth
        # Out: 2*dim x 2*dim x depth/2
        self.G.add(UpSampling2D())
        self.G.add(Conv2DTranspose(int(depth/2), 5, padding='same'))
        self.G.add(BatchNormalization(momentum=0.9))
        self.G.add(Activation('relu'))

        self.G.add(UpSampling2D())
        self.G.add(Conv2DTranspose(int(depth/4), 5, padding='same'))
        self.G.add(BatchNormalization(momentum=0.9))
        self.G.add(Activation('relu'))

        self.G.add(Conv2DTranspose(int(depth/8), 5, padding='same'))
        self.G.add(BatchNormalization(momentum=0.9))
        self.G.add(Activation('relu'))

        # Out: 28 x 28 x 1 grayscale image [0.0,1.0] per pix
        self.G.add(Conv2DTranspose(1, 5, padding='same'))
        self.G.add(Activation('sigmoid'))
        self.G.summary()
        return self.G
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号