def test_SimpleRNN(self):
params = dict(
input_dims=[1, 2, 100], go_backwards=False, activation='tanh',
stateful=False, unroll=False, return_sequences=True, output_dim=4 # Passes for < 3
),
model = Sequential()
if keras.__version__[:2] == '2.':
model.add(SimpleRNN(units=params[0]['output_dim'],
input_shape=(params[0]['input_dims'][1],params[0]['input_dims'][2]),
activation=params[0]['activation'],
return_sequences=params[0]['return_sequences'],
go_backwards=params[0]['go_backwards'],
unroll=True,
))
else:
model.add(SimpleRNN(output_dim=params[0]['output_dim'],
input_length=params[0]['input_dims'][1],
input_dim=params[0]['input_dims'][2],
activation=params[0]['activation'],
return_sequences=params[0]['return_sequences'],
go_backwards=params[0]['go_backwards'],
unroll=True,
))
relative_error, keras_preds, coreml_preds = simple_model_eval(params, model)
for i in range(len(relative_error)):
self.assertLessEqual(relative_error[i], 0.01)
评论列表
文章目录