def create_word_rnn_model(self, emb_dim, emb_path, vocab_word,
vocab_word_size, word_maxlen):
from keras.layers import SimpleRNN
logger.info('Building word SimpleRNN model')
input_word = Input(shape=(word_maxlen, ), name='input_word')
word_emb = Embedding(
vocab_word_size, emb_dim, mask_zero=True,
name='word_emb')(input_word)
rnn = SimpleRNN(
300,
return_sequences=True,
dropout=self.dropout,
recurrent_dropout=self.recurrent_dropout)(word_emb)
dropped = Dropout(0.5)(rnn)
mot = MeanOverTime(mask_zero=True)(dropped)
densed = Dense(self.num_outputs, name='dense')(mot)
output = Activation('sigmoid')(densed)
model = Model(inputs=input_word, outputs=output)
model.get_layer('dense').bias.set_value(self.bias)
if emb_path:
from emb_reader import EmbReader as EmbReader
logger.info('Initializing lookup table')
emb_reader = EmbReader(emb_path, emb_dim=emb_dim)
model.get_layer('word_emb').embeddings.set_value(
emb_reader.get_emb_matrix_given_vocab(
vocab_word,
model.get_layer('word_emb').embeddings.get_value()))
logger.info(' Done')
return model
评论列表
文章目录