def create_char_rnn_model(self, emb_dim, word_maxlen, vocab_char_size,
char_maxlen):
from keras.layers import SimpleRNN
logger.info('Building character RNN model')
input_char = Input(shape=(char_maxlen, ), name='input_char')
char_emb = Embedding(
vocab_char_size, emb_dim, mask_zero=True)(input_char)
rnn = SimpleRNN(
300,
return_sequences=True,
dropout=self.dropout,
recurrent_dropout=self.recurrent_dropout)(char_emb)
dropped = Dropout(0.5)(rnn)
mot = MeanOverTime(mask_zero=True)(dropped)
densed = Dense(self.num_outputs, name='dense')(mot)
output = Activation('sigmoid')(densed)
model = Model(inputs=input_char, outputs=output)
model.get_layer('dense').bias.set_value(self.bias)
logger.info(' Done')
return model
评论列表
文章目录