def make_init_model(self):
models = []
input_data = Input(shape=self.gl_config.input_shape)
import random
init_model_index = random.randint(1, 4)
init_model_index = 1
if init_model_index == 1: # one conv layer with kernel num = 64
stem_conv_1 = Conv2D(128, 3, padding='same', name='conv2d1' )(input_data)
stem_conv_1 = PReLU()(stem_conv_1)
elif init_model_index == 2: # two conv layers with kernel num = 64
stem_conv_0 = Conv2D(128, 3, padding='same', name='conv2d1')(input_data)
stem_conv_0 = PReLU()(stem_conv_0)
stem_conv_1 = Conv2D(128, 3, padding='same', name='conv2d2')(stem_conv_0)
stem_conv_1 = PReLU()(stem_conv_1)
elif init_model_index == 3: # one conv layer with a wider kernel num = 128
stem_conv_1 = Conv2D(256, 3, padding='same', name='conv2d1')(input_data)
stem_conv_1 = PReLU()(stem_conv_1)
elif init_model_index == 4: # two conv layers with a wider kernel_num = 128
stem_conv_0 = Conv2D(256, 3, padding='same', name='conv2d1')(input_data)
stem_conv_0 = PReLU()(stem_conv_0)
stem_conv_1 = Conv2D(256, 3, padding='same', name='conv2d2')(stem_conv_0)
stem_conv_1 = PReLU()(stem_conv_1)
import keras
stem_conv_1 = keras.layers.MaxPooling2D(name='maxpooling2d1')(stem_conv_1)
stem_conv_1 = Conv2D(self.gl_config.nb_class, 3, padding='same', name='conv2d3')(stem_conv_1)
stem_global_pooling_1 = GlobalMaxPooling2D(name='globalmaxpooling2d1')(stem_conv_1)
stem_softmax_1 = Activation('softmax', name='activation1')(stem_global_pooling_1)
model = Model(inputs=input_data, outputs=stem_softmax_1)
return model
评论列表
文章目录