def make_init_model():
input_data = Input(shape=(32, 32, 3))
init_model_index = random.randint(1, 4)
init_model_index = 2
if init_model_index == 1: # one conv layer with kernel num = 64
stem_conv_1 = Conv2D(64, (1, 1), padding='same')(input_data)
elif init_model_index == 2: # two conv layers with kernel num = 64
stem_conv_1 = Conv2D(64, (1, 1), padding='same')(input_data)
stem_conv_2 = Conv2D(64, (1, 1), padding='same')(stem_conv_1)
elif init_model_index == 3: # one conv layer with a wider kernel num = 128
stem_conv_1 = Conv2D(128, (1, 1), padding='same')(input_data)
elif init_model_index == 4: # two conv layers with a wider kernel_num = 128
stem_conv_1 = Conv2D(128, (1, 1), padding='same')(input_data)
stem_conv_2 = Conv2D(128, (1, 1), padding='same')(stem_conv_1)
stem_global_pooling_1 = GlobalMaxPooling2D()(stem_conv_1)
stem_softmax_1 = Activation('softmax')(stem_global_pooling_1)
model = Model(inputs=input_data, outputs=stem_softmax_1)
return model
评论列表
文章目录