def __init__(self, word_index, embedding_matrix):
embedding_layer_c = Embedding(len(word_index) + 1,
EMBEDDING_DIM,
weights=[embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH_C,
trainable=False)
embedding_layer_q = Embedding(len(word_index) + 1,
EMBEDDING_DIM,
weights=[embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH_Q,
trainable=False)
embedding_layer_a = Embedding(len(word_index) + 1,
EMBEDDING_DIM,
weights=[embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH_A,
trainable=False)
context = Input(shape=(MAX_SEQUENCE_LENGTH_C,), dtype='int32', name='context')
question = Input(shape=(MAX_SEQUENCE_LENGTH_Q,), dtype='int32', name='question')
answer = Input(shape=(MAX_SEQUENCE_LENGTH_A,), dtype='int32', name='answer')
embedded_context = embedding_layer_c(context)
embedded_question = embedding_layer_q(question)
embedded_answer = embedding_layer_a(answer)
l_lstm_c = Bidirectional(LSTM(60, return_sequences=True))(embedded_context)
conv_blocksC = []
for sz in [5,7]:
conv = Convolution1D(filters=20,
kernel_size=sz,
padding="valid",
activation="relu",
strides=1)(l_lstm_c)
conv = MaxPooling1D(pool_size=2)(conv)
conv = Flatten()(conv)
conv_blocksC.append(conv)
l_lstm_q = Bidirectional(LSTM(60, return_sequences=True))(embedded_question)
conv_blocksQ = []
for sz in [3, 5]:
conv = Convolution1D(filters=20,
kernel_size=sz,
padding="valid",
activation="relu",
strides=1)(l_lstm_q)
conv = MaxPooling1D(pool_size=2)(conv)
conv = Flatten()(conv)
conv_blocksQ.append(conv)
l_lstm_a = Bidirectional(LSTM(60))(embedded_answer)
concat_c_q = concatenate([l_lstm_a] + conv_blocksQ + conv_blocksC , axis=1)
relu_c_q_a = Dense(100, activation='relu')(concat_c_q)
relu_c_q_a = Dropout(0.25)(relu_c_q_a)
softmax_c_q_a = Dense(2, activation='softmax')(relu_c_q_a)
self.model = Model([question, answer, context], softmax_c_q_a)
opt = Nadam()
self.model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['acc'])
评论列表
文章目录