def Dense_model_microPF(Inputs,nclasses,Inputshapes,dropoutRate=-1):
from keras.layers.local import LocallyConnected1D
#npf = Convolution1D(32, 1, kernel_initializer='lecun_uniform', activation='relu')(Inputs[1])
#npf = Dropout(dropoutRate)(npf)
#npf = Convolution1D(8, 1, kernel_initializer='lecun_uniform', activation='relu')(npf)
#npf = Dropout(dropoutRate)(npf)
#npf = Convolution1D(4, 1, kernel_initializer='lecun_uniform', activation='relu')(npf)
#npf = Dropout(dropoutRate)(npf)
npf = Flatten()(Inputs[1])
x = merge( [Inputs[0],npf] , mode='concat')
x= Dense(250, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(dropoutRate)(x)
x= Dense(200, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(dropoutRate)(x)
x= Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(dropoutRate)(x)
x= Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(dropoutRate)(x)
x= Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
predictions = Dense(nclasses, activation='softmax',kernel_initializer='lecun_uniform')(x)
model = Model(inputs=Inputs, outputs=predictions)
return model
评论列表
文章目录