def convolutional_model_ConvCSV(Inputs,nclasses,nregclasses,dropoutRate=0.25):
"""
Inputs similar to 2016 training, but with covolutional layers on each track and sv
"""
a = Convolution1D(8, 1, kernel_initializer='lecun_uniform', activation='relu')(Inputs[1])
a = Dropout(dropoutRate)(a)
a = Convolution1D(8, 1, kernel_initializer='lecun_uniform', activation='relu')(a)
a = Dropout(dropoutRate)(a)
a = Convolution1D(8, 1, kernel_initializer='lecun_uniform', activation='relu')(a)
a = Dropout(dropoutRate)(a)
a=Flatten()(a)
c = Convolution1D(8, 1, kernel_initializer='lecun_uniform', activation='relu')(Inputs[2])
c = Dropout(dropoutRate)(c)
c = Convolution1D(8, 1, kernel_initializer='lecun_uniform', activation='relu')(c)
c = Dropout(dropoutRate)(c)
c = Convolution1D(8, 1, kernel_initializer='lecun_uniform', activation='relu')(c)
c = Dropout(dropoutRate)(c)
c=Flatten()(c)
x = Concatenate()( [Inputs[0],a,c] )
x = Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(dropoutRate)(x)
x = Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(dropoutRate)(x)
x = Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(dropoutRate)(x)
x = Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dropout(dropoutRate)(x)
x= Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
predictions = Dense(nclasses, activation='softmax',kernel_initializer='lecun_uniform')(x)
model = Model(inputs=Inputs, outputs=predictions)
return model
评论列表
文章目录