def test_tiny_conv_upsample_1d_random(self):
np.random.seed(1988)
input_dim = 2
input_length = 10
filter_length = 3
nb_filters = 4
model = Sequential()
model.add(Conv1D(nb_filters, kernel_size = filter_length, padding='same',
input_shape=(input_length, input_dim)))
model.add(UpSampling1D(size = 2))
# Set some random weights
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Test the keras model
self._test_keras_model(model)
评论列表
文章目录