def test_conv_batchnorm_no_gamma_no_beta(self, model_precision=_MLMODEL_FULL_PRECISION):
np.random.seed(1988)
input_dim = 10
input_shape = (input_dim, input_dim, 3)
num_kernels = 3
kernel_height = 5
kernel_width = 5
# Define a model
model = Sequential()
model.add(Conv2D(input_shape = input_shape,
filters = num_kernels, kernel_size = (kernel_height, kernel_width)))
model.add(BatchNormalization(center=False, scale=False, epsilon=1e-5))
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Get the coreml model
self._test_keras_model(model, model_precision=model_precision)
评论列表
文章目录