def create_imgText(image_shape, max_caption_len,vocab_size):
image_model = Sequential()
# image_shape : C,W,H
# input: 100x100 images with 3 channels -> (3, 100, 100) tensors.
# this applies 32 convolution filters of size 3x3 each.
image_model.add(Convolution2D(32, 3, 3, border_mode='valid', input_shape=image_shape))
image_model.add(BatchNormalization())
image_model.add(Activation('relu'))
image_model.add(Convolution2D(32, 3, 3))
image_model.add(BatchNormalization())
image_model.add(Activation('relu'))
image_model.add(MaxPooling2D(pool_size=(2, 2)))
image_model.add(Dropout(0.25))
image_model.add(Convolution2D(64, 3, 3, border_mode='valid'))
image_model.add(BatchNormalization())
image_model.add(Activation('relu'))
image_model.add(Convolution2D(64, 3, 3))
image_model.add(BatchNormalization())
image_model.add(Activation('relu'))
image_model.add(MaxPooling2D(pool_size=(2, 2)))
image_model.add(Dropout(0.25))
image_model.add(Flatten())
# Note: Keras does automatic shape inference.
image_model.add(Dense(128))
image_model.add(RepeatVector(1))
#model = AttentionSeq2Seq(input_dim=128, input_length=1, hidden_dim=128, output_length=max_caption_len, output_dim=vocab_size)
model = Seq2Seq(input_dim=128, input_length=1, hidden_dim=128, output_length=max_caption_len,
output_dim=128, peek=True)
image_model.add(model)
image_model.add(TimeDistributed(Dense(vocab_size)))
image_model.add(Activation('softmax'))
return image_model
评论列表
文章目录