def generate_model(output_len, chars=None):
"""Generate the model"""
print('Build model...')
chars = chars or CHARS
model = Sequential()
# "Encode" the input sequence using an RNN, producing an output of HIDDEN_SIZE
# note: in a situation where your input sequences have a variable length,
# use input_shape=(None, nb_feature).
for layer_number in range(INPUT_LAYERS):
model.add(recurrent.LSTM(HIDDEN_SIZE, input_shape=(None, len(chars)), init=INITIALIZATION,
return_sequences=layer_number + 1 < INPUT_LAYERS))
model.add(Dropout(AMOUNT_OF_DROPOUT))
# For the decoder's input, we repeat the encoded input for each time step
model.add(RepeatVector(output_len))
# The decoder RNN could be multiple layers stacked or a single layer
for _ in range(OUTPUT_LAYERS):
model.add(recurrent.LSTM(HIDDEN_SIZE, return_sequences=True, init=INITIALIZATION))
model.add(Dropout(AMOUNT_OF_DROPOUT))
# For each of step of the output sequence, decide which character should be chosen
model.add(TimeDistributed(Dense(len(chars), init=INITIALIZATION)))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
评论列表
文章目录