def test_keras_model(num_classes):
bounds = (0, 255)
channels = num_classes
model = Sequential()
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
model.add(GlobalAveragePooling2D(
data_format='channels_last', input_shape=(5, 5, channels)))
model = KerasModel(
model,
bounds=bounds,
predicts='logits')
test_images = np.random.rand(2, 5, 5, channels).astype(np.float32)
test_label = 7
assert model.batch_predictions(test_images).shape \
== (2, num_classes)
test_logits = model.predictions(test_images[0])
assert test_logits.shape == (num_classes,)
test_gradient = model.gradient(test_images[0], test_label)
assert test_gradient.shape == test_images[0].shape
np.testing.assert_almost_equal(
model.predictions_and_gradient(test_images[0], test_label)[0],
test_logits)
np.testing.assert_almost_equal(
model.predictions_and_gradient(test_images[0], test_label)[1],
test_gradient)
assert model.num_classes() == num_classes
评论列表
文章目录