def test_temporal_classification():
'''
Classify temporal sequences of float numbers
of length 3 into 2 classes using
single layer of GRU units and softmax applied
to the last activations of the units
'''
(X_train, y_train), (X_test, y_test) = get_test_data(nb_train=500,
nb_test=500,
input_shape=(3, 5),
classification=True,
nb_class=2)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
model = Sequential()
model.add(GRU(y_train.shape[-1],
input_shape=(X_train.shape[1], X_train.shape[2]),
activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adagrad',
metrics=['accuracy'])
history = model.fit(X_train, y_train, nb_epoch=20, batch_size=32,
validation_data=(X_test, y_test),
verbose=0)
assert(history.history['val_acc'][-1] >= 0.8)
评论列表
文章目录