models.py 文件源码

python
阅读 18 收藏 0 点赞 0 评论 0

项目:Sacred_Deep_Learning 作者: AAbercrombie0492 项目源码 文件源码
def build_model(self):
        from resnet50 import identity_block, conv_block
        from keras.layers import Input
        from keras import layers
        from keras.layers import Dense
        from keras.layers import Activation
        from keras.layers import Flatten
        from keras.layers import Conv2D
        from keras.layers import MaxPooling2D
        from keras.layers import GlobalMaxPooling2D
        from keras.layers import ZeroPadding2D
        from keras.layers import AveragePooling2D
        from keras.layers import GlobalAveragePooling2D
        from keras.layers import BatchNormalization
        from keras.models import Model
        from keras.preprocessing import image
        import keras.backend as K
        from keras.utils import layer_utils

        x = ZeroPadding2D((3, 3))(input_shape=self.X[0].shape)
        x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
        x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
        x = Activation('relu')(x)
        x = MaxPooling2D((3, 3), strides=(2, 2))(x)

        x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
        x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
        x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

        x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
        x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
        x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
        x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

        x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

        x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
        x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
        x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

        x = AveragePooling2D((7, 7), name='avg_pool')(x)
        x = Flatten()(x)
        x = Dense(2, activation='softmax', name = 'fc1000')(x)

        self.model = Model(inputs, x, name='resnet50')
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号