def define_model():
img_input = Input(shape=(32, 32, 2))
x = Convolution2D(32, 3, 3, subsample=(1, 1), border_mode='same')(img_input)
x = res_block(x, nb_filters=32, block=0, subsample_factor=1)
x = res_block(x, nb_filters=32, block=0, subsample_factor=1)
x = res_block(x, nb_filters=32, block=0, subsample_factor=1)
x = res_block(x, nb_filters=64, block=1, subsample_factor=2)
x = res_block(x, nb_filters=64, block=1, subsample_factor=1)
x = res_block(x, nb_filters=64, block=1, subsample_factor=1)
x = res_block(x, nb_filters=128, block=2, subsample_factor=2)
x = res_block(x, nb_filters=128, block=2, subsample_factor=1)
x = res_block(x, nb_filters=128, block=2, subsample_factor=1)
x = res_block(x, nb_filters=128, block=2, subsample_factor=1)
x = res_block(x, nb_filters=256, block=3, subsample_factor=2)
x = res_block(x, nb_filters=256, block=3, subsample_factor=1)
x = res_block(x, nb_filters=256, block=3, subsample_factor=1)
x = res_block(x, nb_filters=256, block=3, subsample_factor=1)
x = BatchNormalization(axis=3)(x)
x = Activation('relu')(x)
x = AveragePooling2D(pool_size=(3, 3), strides=(2, 2), border_mode='valid')(x)
x = Flatten()(x)
bbox = Dense(4, activation='linear', name='bbox')(x)
model_bbox = Model(img_input, bbox)
model_bbox.compile(optimizer='adam', loss='mae')
return model_bbox
评论列表
文章目录