resnet2d09d.py 文件源码

python
阅读 22 收藏 0 点赞 0 评论 0

项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码
def define_model(image_shape):
    img_input = Input(shape=image_shape)

    x = Convolution2D(128, 3, 3, subsample=(1, 1), border_mode='same')(img_input)

    x = res_block(x, nb_filters=128, block=0, subsample_factor=1)
    x = res_block(x, nb_filters=128, block=0, subsample_factor=1)
    x = res_block(x, nb_filters=128, block=0, subsample_factor=1)

    x = res_block(x, nb_filters=256, block=0, subsample_factor=2)
    x = res_block(x, nb_filters=256, block=0, subsample_factor=1)
    x = res_block(x, nb_filters=256, block=0, subsample_factor=1)

    x = res_block(x, nb_filters=512, block=0, subsample_factor=2)
    x = res_block(x, nb_filters=512, block=0, subsample_factor=1)
    x = res_block(x, nb_filters=512, block=0, subsample_factor=1)

    x = res_block(x, nb_filters=1024, block=0, subsample_factor=2)
    x = res_block(x, nb_filters=1024, block=0, subsample_factor=1)
    x = res_block(x, nb_filters=1024, block=0, subsample_factor=1)

    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)

    x = AveragePooling2D(pool_size=(3, 3), strides=(2, 2), border_mode='valid')(x)
    x = Flatten()(x)
    x = Dense(1, activation='sigmoid', name='predictions')(x)

    model = Model(img_input, x)
    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', 'precision', 'recall'])
    model.summary()
    return model
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号