def load_model(self, frm_modelweights='', frmdiff_modelweights=''):
frm_model = Sequential()
frm_model.add(GRU(4096,
return_sequences=True,
input_dim=self.feature_size,
input_length=MAX_FRAMES,
activation='relu',
name='fc1'))
frm_model.add(Dropout(0.3))
frm_model.add(GRU(4096,
return_sequences=False,
activation='relu',
name='fc2'))
frm_model.add(Dropout(0.3))
frm_model.add(Dense(self.numclasses, activation='softmax', name='frm_prediction'))
if frm_modelweights:
frm_model.load_weights(frm_modelweights, by_name=True)
print("Frame model loaded with weights from %s." % frm_modelweights)
else:
print "Empty frame model loaded."
'''
frmdiff_model = Sequential()
frmdiff_model.add(GRU(4096, input_dim=self.feature_size, activation='relu', name='fc1'))
frmdiff_model.add(Dropout(0.3))
frmdiff_model.add(GRU(4096, activation='relu', name='fc2'))
frmdiff_model.add(Dropout(0.3))
frmdiff_model.add(Dense(self.numclasses, activation='softmax', name='frmdiff_feature'))
if frmdiff_modelweights:
frmdiff_model.load_weights(frmdiff_modelweights, by_name=True)
print('Frame model loaded with weights from %s.' % frmdiff_modelweights)
else:
print "Empty frame model loaded."
model = Sequential()
model.add(Merge([frm_model, frmdiff_model], mode='concat'))
model.add(Dense(self.numclasses, activation='softmax', name='predictions'))
'''
return frm_model
load_deepmodels.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录