def _build_model(self):
# Deep Conv Neural Net for Deep-Q learning Model
model = Sequential()
model.add(Conv1D(128, 3, input_shape=(19,48)))
model.add(Activation('relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Conv1D(64, 3))
model.add(Activation('relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(self.action_size))
model.add(Activation('sigmoid'))
model.compile(loss=self._huber_loss,
optimizer=Adam(lr=self.learning_rate))
#model.compile(loss='binary_crossentropy',
# optimizer='rmsprop',
# metrics=['accuracy'])
return model
评论列表
文章目录