def get_unet():
inputs = Input((1, img_rows, img_cols))
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(inputs)
conv1 = Dropout(0.2)(conv1)
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
pool1 = BatchNormalization()(pool1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool1)
conv2 = Dropout(0.2)(conv2)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
pool2 = BatchNormalization()(pool2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool2)
conv3 = Dropout(0.2)(conv3)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
pool3 = BatchNormalization()(pool3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(pool3)
conv4 = Dropout(0.2)(conv4)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
pool4 = BatchNormalization()(pool4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(pool4)
conv5 = Dropout(0.2)(conv5)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(conv5)
up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(up6)
conv6 = Dropout(0.2)(conv6)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv6)
conv6 = BatchNormalization()(conv6)
up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(up7)
conv7 = Dropout(0.2)(conv7)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv7)
conv7 = BatchNormalization()(conv7)
up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up8)
conv8 = Dropout(0.2)(conv8)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv8)
conv8 = BatchNormalization()(conv8)
up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up9)
conv9 = Dropout(0.2)(conv9)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv9)
conv9 = BatchNormalization()(conv9)
conv10 = Convolution2D(1, 1, 1, activation='sigmoid')(conv9)
model = Model(input=inputs, output=conv10)
model.compile(optimizer=Adam(lr=1.0e-4), loss=dice_coef_loss, metrics=[dice_coef])
return model
deep_learning_2DUnet.py 文件源码
python
阅读 16
收藏 0
点赞 0
评论 0
评论列表
文章目录