def modeling_1(self, input_shape, nb_classes):
print("Modeling_1")
nb_filters = 8
# size of pooling area for max pooling
pool_size_l = [(4, 4), (4,4)] # 160 --> 40, 40 --> 10
# convolution kernel size
kernel_size = (20, 20)
model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
border_mode='valid',
input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size_l[0])) # 160 --> 40
model.add(Dropout(0.25))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
border_mode='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size_l[1])) # 40 --> 10
model.add(Dropout(0.25))
model.add(Convolution2D(nb_filters, 2, 2,
border_mode='valid'))
model.add(Activation('relu'))
model.add(UpSampling2D(pool_size_l[1])) # 10 --> 40
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(4))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
return model
评论列表
文章目录