def conv_layer(in_, nb_filter, filter_length, subsample=1, upsample=1, only_conv=False):
if upsample != 1:
out = UpSampling2D(size=(upsample, upsample))(in_)
else:
out = in_
padding = int(np.floor(filter_length / 2))
out = ReflectPadding2D((padding, padding))(out)
out = Conv2D(nb_filter, filter_length, filter_length, subsample=(subsample, subsample), border_mode="valid")(out)
if not only_conv:
out = InstanceNormalization()(out)
out = Activation("relu")(out)
return out
评论列表
文章目录