def build_model(data, word_weights, tag_window=5, embed_dim=100):
batch_size = 32
nb_epoch = 16
nb_class = 4
hidden_dim = 128
train_x = np.array(list(data['x']))
train_y = np.array(list(data['y']))
train_y = np_utils.to_categorical(train_y, nb_class)
print(train_x.shape)
print(train_y.shape)
input_x = Input(shape=(tag_window, ), dtype='float32', name='input_x')
embed_x = Embedding(output_dim=embed_dim,
input_dim=word_weights.shape[0],
input_length=tag_window,
weights=[word_weights],
name='embed_x')(input_x)
bi_lstm = Bidirectional(LSTM(hidden_dim, return_sequences=False), merge_mode='sum')(embed_x)
x_dropout = Dropout(0.5)(bi_lstm)
x_output = Dense(nb_class,
# kernel_regularizer=regularizers.l2(0.01),
# kernel_constraint=maxnorm(3.0),
# activity_regularizer=regularizers.l2(0.01),
activation='softmax')(x_dropout)
model = Model(input=[input_x], output=[x_output])
model.compile(optimizer='adamax', loss='categorical_crossentropy',metrics=['accuracy'])
model.fit([train_x], [train_y], validation_split=0.2,
batch_size=batch_size, epochs=nb_epoch, shuffle=True)
评论列表
文章目录