model_rnn.py 文件源码

python
阅读 23 收藏 0 点赞 0 评论 0

项目:botcycle 作者: D2KLab 项目源码 文件源码
def bidirectional_lstm(len_output):
    # sequence_input is a matrix of glove vectors (one for each input word)
    sequence_input = Input(
        shape=(MAX_SEQUENCE_LENGTH, EMBEDDING_DIM,), dtype='float32')
    l_lstm = Bidirectional(LSTM(100))(sequence_input)
    preds = Dense(len_output, activation='softmax')(l_lstm)
    model = Model(sequence_input, preds)
    model.compile(loss='categorical_crossentropy',
                  optimizer='rmsprop',
                  metrics=[utils.f1_score, 'categorical_accuracy'])

    """
    model.add(Bidirectional(LSTM(shape['nr_hidden'])))
    # dropout to avoid overfitting
    model.add(Dropout(settings['dropout']))
    model.add(Dense(shape['nr_class'], activation='sigmoid'))
    model.compile(optimizer=Adam(lr=settings['lr']), loss='binary_crossentropy',
                metrics=['accuracy'])
    """

    return model
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号