def local(nbfilters,fsize1,fsize2,inp,pad = True,subsample = (1,1), batchnorm =True, fast = True):
if pad:
inp = layers.ZeroPadding2D(padding=(int((fsize1-1)/2), int((fsize2-1)/2)))(inp)
if not fast:
lconv = layers.LocallyConnected2D(nbfilters,fsize1,fsize2,border_mode = 'valid',subsample=subsample)
else:
lconv = layers_perso.LocallyConnected2D_fast(nbfilters,fsize1,fsize2,border_mode = 'valid',subsample=subsample)
conv = lconv((inp))
if batchnorm:
conv = layers_perso.BatchNormalization_local(lconv,conv)
return activation()(conv)
models.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录