def convolutional(nbfilters,fsize1,fsize2,inp,pad = True,subsample = (1,1),batchnorm = True,other_activation = None):
# fsize1 and fsize2 must be the same, and must be odd numbers
if pad and fsize1 > 1: # double check
inp = layers.ZeroPadding2D(padding=(int((fsize1-1)/2), int((fsize2-1)/2)))(inp)
conv = layers.Convolution2D(nbfilters,fsize1,fsize2,border_mode = 'valid',subsample=subsample)(inp)
if batchnorm:
conv = layers.BatchNormalization(mode = 0,axis = 1)(conv)
if other_activation is not None:
conv = activation(other_activation)(conv)
else:
conv = activation()(conv)
return conv
models.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录