def create_bi_cnn():
model = Sequential()
# 1
model.add(Conv2D(86, (5, 5), strides=3, activation = 'relu', input_shape=(260, 260, 1)))
model.add(MaxPooling2D(pool_size=(2, 2), strides=2))
# 2
model.add(ZeroPadding2D(1))
model.add(Conv2D(233, (5, 5), strides=2, activation = 'relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=2))
# 3
model.add(ZeroPadding2D(1))
model.add(Conv2D(332, (3, 3), activation = 'relu'))
# 4
model.add(ZeroPadding2D(1))
model.add(Conv2D(332, (3, 3), activation = 'relu'))
# 5
model.add(Conv2D(256, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=2))
# 6
model.add(Conv2D(256, (4, 4), activation='relu'))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
# 7
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(2, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
return model
abd_model_ini.py 文件源码
python
阅读 25
收藏 0
点赞 0
评论 0
评论列表
文章目录