def create_actor_network(self, state_size,action_dim):
print("Now we build the model")
S = Input(shape=[state_size])
h0 = Dense(HIDDEN1_UNITS, activation='relu')(S)
h1 = Dense(HIDDEN2_UNITS, activation='relu')(h0)
# Steering = Dense(1,activation='tanh',init=lambda shape:VarianceScaling(scale=1e-4)(shape))(h1)
# Acceleration = Dense(1,activation='sigmoid',lambda shape:VarianceScaling(scale=1e-4)(shape))(h1)
# Brake = Dense(1,activation='sigmoid',lambda shape:VarianceScaling(scale=1e-4)(shape))(h1)
Steering = Dense(1,activation='tanh')(h1)
Acceleration = Dense(1,activation='sigmoid')(h1)
Brake = Dense(1,activation='sigmoid')(h1)
# V = merge([Steering,Acceleration,Brake],mode='concat')
V = layers.concatenate([Steering,Acceleration,Brake])
model = Model(inputs=S,outputs=V)
return model, model.trainable_weights, S
ActorNetwork.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录