def make_model(batch_size, image_dim):
model = Sequential()
model.add(BatchNormalization(batch_input_shape=(batch_size,image_dim[1],image_dim[2],1)))
model.add(Conv2D( 16 , [3,3], activation='relu',padding='same'))
#model.add(Dropout(0.2))
model.add(Conv2D( 32 , [3,3], activation='relu',padding='same'))
#model.add(Dropout(0.2))
model.add(Conv2D( 64 , [3,3], activation='relu',padding='same'))
model.add(Dropout(0.2))
#model.add(Conv2D( 16 , [3,3], activation='relu',padding='same'))
#model.add(Dropout(0.2))
#model.add(Conv2D( 16 , [3,3], activation='relu',padding='same'))
#model.add(Dropout(0.2))
#model.add(Conv2D( 16 , [3,3], activation='relu',padding='same'))
#model.add(Conv2D(64, (3, 3), activation='relu',padding='same'))
#model.add(Conv2D(64, (3, 3), activation='relu',padding='same'))
#model.add(Conv2D(64, (3, 3), activation='relu',padding='same'))
model.add(Conv2D(1, kernel_size=1, padding='same', activation='sigmoid'))
return(model)
评论列表
文章目录