def build_mlp(n_con,n_emb,vocabs_size,n_dis,emb_size,cluster_size):
hidden_size = 800
con = Sequential()
con.add(Dense(input_dim=n_con,output_dim=emb_size))
emb_list = []
for i in range(n_emb):
emb = Sequential()
emb.add(Embedding(input_dim=vocabs_size[i],output_dim=emb_size,input_length=n_dis))
emb.add(Flatten())
emb_list.append(emb)
model = Sequential()
model.add(Merge([con] + emb_list,mode='concat'))
model.add(BatchNormalization())
model.add(Dense(hidden_size,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(cluster_size,activation='softmax'))
model.add(Lambda(caluate_point, output_shape =[2]))
return model
评论列表
文章目录