def train(self,data):
print 'building model.....'
self.prepare_data(data,re_train=True)
inputs = Input(shape=(self.step,),dtype='int32')
embed = Embedding(self.vocab_size,self.embedding_dims,input_length=self.step)(inputs)
encode = LSTM(128)(embed)
pred = Dense(self.vocab_size,activation='softmax')(encode)
model = Model(input=inputs,output=pred)
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
history = LossHistory()
model.fit(self.X_data, self.y_data,
batch_size=self.batch_size,
nb_epoch=self.nb_epoch,callbacks=[history])
#self.avg_loss = loss.history['loss']
self.history = history
with open('history','wb') as h:
pickle.dump(history.losses,h)
model_json = model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("model.h5")
learning_model.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录