def lstm_train(X_train,y_train,vocab_size):
X_train = sequence.pad_sequences(X_train, maxlen=MAX_LEN)
main_input = Input(shape=(MAX_LEN,), dtype='int32')
x = Embedding(output_dim=EMBED_SIZE, input_dim=vocab_size, input_length=MAX_LEN)(main_input)
lstm_out = LSTM(HIDDEN_SIZE)(x)
main_loss = Dense(1, activation='sigmoid', name='main_output')(lstm_out)
model = Model(input=main_input, output=main_loss)
model.compile(loss='binary_crossentropy', optimizer='rmsprop')
model.fit(X_train, y_train, batch_size=BATCH_SIZE, nb_epoch=EPOCHS)
return model
评论列表
文章目录