def bag_of_convs_model(optimizer="adam",compile=True):
main_input = Input(shape=(100,), dtype='int32', name='main_input')
embedding = Embedding(output_dim=32, input_dim=100, input_length=100,
dropout=0)(main_input)
conv1 = getconvmodel(2,256)(embedding)
conv2 = getconvmodel(3,256)(embedding)
conv3 = getconvmodel(4,256)(embedding)
conv4 = getconvmodel(5,256)(embedding)
merged = merge([conv1,conv2,conv3,conv4],mode="concat")
middle = Dense(1024,activation='relu')(merged)
middle = Dropout(0.5)(middle)
middle = Dense(1024,activation='relu')(middle)
middle = Dropout(0.5)(middle)
output = Dense(1,activation='sigmoid')(middle)
model = Model(input=main_input,output=output)
if compile:
model.compile(loss='binary_crossentropy', optimizer=optimizer)
return model
评论列表
文章目录