def prep_model(inputs, N, s0pad, s1pad, c):
# Word-level projection before averaging
inputs[0] = TimeDistributed(Dense(N, activation='relu'))(inputs[0])
inputs[0] = Lambda(lambda x: K.max(x, axis=1), output_shape=(N, ))(inputs[0])
inputs[1] = TimeDistributed(Dense(N, activation='relu'))(inputs[1])
inputs[1] = Lambda(lambda x: K.max(x, axis=1), output_shape=(N, ))(inputs[1])
merged = concatenate([inputs[0], inputs[1]])
# Deep
for i in range(c['deep']):
merged = Dense(c['nndim'], activation=c['nnact'])(merged)
merged = Dropout(c['nndropout'])(merged)
merged = BatchNormalization()(merged)
is_duplicate = Dense(1, activation='sigmoid')(merged)
return [is_duplicate], N
评论列表
文章目录