def transform_model(weight_loss_pix=5e-4):
inputs = Input(shape=( 128, 128, 3))
x1 = Convolution2D(64, 5, 5, border_mode='same')(inputs)
x2 = LeakyReLU(alpha=0.3, name='wkcw')(x1)
x3 = BatchNormalization()(x2)
x4 = Convolution2D(128, 4, 4, border_mode='same', subsample=(2,2))(x3)
x5 = LeakyReLU(alpha=0.3)(x4)
x6 = BatchNormalization()(x5)
x7 = Convolution2D(256, 4, 4, border_mode='same', subsample=(2,2))(x6)
x8 = LeakyReLU(alpha=0.3)(x7)
x9 = BatchNormalization()(x8)
x10 = Deconvolution2D(128, 3, 3, output_shape=(None, 64, 64, 128), border_mode='same', subsample=(2,2))(x9)
x11 = BatchNormalization()(x10)
x12 = Deconvolution2D(64, 3, 3, output_shape=(None, 128, 128, 64), border_mode='same', subsample=(2,2))(x11)
x13 = BatchNormalization()(x12)
x14 = Deconvolution2D(3, 4, 4, output_shape=(None, 128, 128, 3), border_mode='same', activity_regularizer=activity_l1(weight_loss_pix))(x13)
output = merge([inputs, x14], mode='sum')
model = Model(input=inputs, output=output)
return model
model&train.py 文件源码
python
阅读 35
收藏 0
点赞 0
评论 0
评论列表
文章目录