def fire_module(x, fire_id, squeeze=16, expand=64, dim_ordering='th'):
s_id = 'fire' + str(fire_id) + '/'
if dim_ordering is 'tf':
c_axis = 3
else:
c_axis = 1
x = Convolution2D(squeeze, 1, 1, border_mode='valid', name=s_id + sq1x1)(x)
x = Activation('relu', name=s_id + relu + sq1x1)(x)
left = Convolution2D(expand, 1, 1, border_mode='valid', name=s_id + exp1x1)(x)
left = Activation('relu', name=s_id + relu + exp1x1)(left)
right = Convolution2D(expand, 3, 3, border_mode='same', name=s_id + exp3x3)(x)
right = Activation('relu', name=s_id + relu + exp3x3)(right)
x = merge([left, right], mode='concat', concat_axis=c_axis, name=s_id + 'concat')
return x
# Original SqueezeNet from paper.
a01_squeezenet.py 文件源码
python
阅读 24
收藏 0
点赞 0
评论 0
评论列表
文章目录