def createModel(w=None,h=None):
# Input placeholder
original = Input(shape=(w, h, 4), name='icon_goes_here')
# Model layer stack
x = original
x = Convolution2D(64, 4, 4, activation='relu', border_mode='same', b_regularizer=l2(0.1))(x)
x = Convolution2D(64, 4, 4, activation='relu', border_mode='same', b_regularizer=l2(0.1))(x)
x = Convolution2D(64, 4, 4, activation='relu', border_mode='same', b_regularizer=l2(0.1))(x)
x = Convolution2D(64, 4, 4, activation='relu', border_mode='same', b_regularizer=l2(0.1))(x)
x = AveragePooling2D((2, 2), border_mode='valid')(x)
x = Convolution2D(16, 4, 4, activation='relu', border_mode='same', b_regularizer=l2(0.1))(x)
x = Convolution2D(4, 4, 4, activation='relu', border_mode='same', b_regularizer=l2(0.1))(x)
downscaled = x
# Compile model
hintbot = Model(input=original, output=downscaled)
hintbot.compile(optimizer='adam', loss='mean_squared_error')
# Train
if (os.path.isfile(load_weights_filepath)):
hintbot.load_weights(load_weights_filepath)
return hintbot
评论列表
文章目录