def conv2d_bn(x, nb_filter,num_row, num_col, strides=(1,1), padding='same', name=None):
if name is not None:
bn_name = name + '_bn'
conv_name = name + '_conv'
else:
bn_name = None
conv_name = None
if K.image_data_format() == 'channels_first':
bn_axis = 1
else:
bn_axis = 3
x = Convolution2D(nb_filter,[num_row, num_col],padding=padding,strides=strides,activation='relu',name=conv_name)(x)
x = FixedBatchNormalization(axis=bn_axis, name=bn_name)(x)
return x
评论列表
文章目录