def discriminator_model():
""" return a (b, 1) logits"""
model = Sequential()
model.add(Convolution2D(64, 4, 4,border_mode='same',input_shape=(IN_CH*2, img_cols, img_rows)))
model.add(BatchNormalization(mode=2))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(128, 4, 4,border_mode='same'))
model.add(BatchNormalization(mode=2))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(512, 4, 4,border_mode='same'))
model.add(BatchNormalization(mode=2))
model.add(Activation('tanh'))
model.add(Convolution2D(1, 4, 4,border_mode='same'))
model.add(BatchNormalization(mode=2))
model.add(Activation('tanh'))
model.add(Activation('sigmoid'))
return model
评论列表
文章目录